Notes 5.5 Law of Sines

Label the sides and angles of the following triangle. Use A, B, and C to denote angles and a, b, and c to denote sides sides.

__, you need to know the measure of at least one side and any two other $_$ of the triangle – either two sides, two angles, or one angle and one side. This breaks down Measures

- into the following four cases. 1. Two angles and any side (AAS or ASA)
 - 2. Two sides and angle opposite one of them (SSA)
 - 3. Three sides (SSS)
 - 4. Two sides and their included angle (SAS)

Law of Sines

If ABC is a triangle with sides a, b, and c, then

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

A is obtuse.

Example #1 Given Two Angles and One Side - AAS

Solve AABC

For triangle ABC, $A = 35^{\circ}$, $B = 50^{\circ}$, and a = 16 feet. Find the remaining angles and sides

mac= 180 -(35+50) 180 - 85 = 95°

$$\frac{16}{51035} = \frac{C}{51095}$$

$$1651095 = CS1035$$

$$C = \frac{1651095}{510(35)}$$

MLC=

$$\frac{32}{\sin 30} = \frac{c}{\sin 105}$$

Example 2 Given Two Angles and One Side - ASA

Because of prevailing winds, a tree grew so that it was leaning 3° from the vertical. At a point 20 meters from the tree, the angle of elevation to the top of the tree is 28° . Find the height h of the tree.

$$\frac{20}{\sin 65} = \frac{h}{\sin 28}$$

You try:

Find the height of the tree shown below.

$$\frac{30}{51061.17} = \frac{h}{51022.83}$$